1,059 research outputs found

    New Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities

    Get PDF
    The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world dataset. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory with dynamical \Delta(1232) degrees of freedom shows the data are consistent with and within the world dataset. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities and combining them with a recent result for the proton, we obtain the neutron polarizabilities as \alpha_n = [11.55 +/- 1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and \beta_n = [3.65 -/+ 1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with \chi^2 = 45.2 for 44 degrees of freedom.Comment: 6 pages, 3 figures, comments from Physical Review Letters Referees addresse

    Experience with custom processors in space flight applications

    Get PDF
    The Applied Physics Laboratory (APL) has developed a magnetometer instrument for a swedish satellite named Freja with launch scheduled for August 1992 on a Chinese Long March rocket. The magnetometer controller utilized a custom microprocessor designed at APL with the Genesil silicon compiler. The processor evolved from our experience with an older bit-slice design and two prior single chip efforts. The architecture of our microprocessor greatly lowered software development costs because it was optimized to provide an interactive and extensible programming environment hosted by the target hardware. Radiation tolerance of the microprocessor was also tested and was adequate for Freja's mission -- 20 kRad(Si) total dose and very infrequent latch-up and single event upset events

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103

    On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way

    Get PDF
    We apply an analytic theory for environmentally-dependent molecular cloud lifetimes to the Central Molecular Zone of the Milky Way. Within this theory, the cloud lifetime in the Galactic centre is obtained by combining the time-scales for gravitational instability, galactic shear, epicyclic perturbations and cloud-cloud collisions. We find that at galactocentric radii ∼45-120 pc, corresponding to the location of the ‘100-pc stream’, cloud evolution is primarily dominated by gravitational collapse, with median cloud lifetimes between 1.4 and 3.9 Myr. At all other galactocentric radii, galactic shear dominates the cloud lifecycle, and we predict that molecular clouds are dispersed on time-scales between 3 and 9 Myr, without a significant degree of star formation. Along the outer edge of the 100-pc stream, between radii of 100 and 120 pc, the time-scales for epicyclic perturbations and gravitational free-fall are similar. This similarity of time-scales lends support to the hypothesis that, depending on the orbital geometry and timing of the orbital phase, cloud collapse and star formation in the 100-pc stream may be triggered by a tidal compression at pericentre. Based on the derived time-scales, this should happen in approximately 20 per cent of all accretion events onto the 100-pc stream

    Auditory and cognitive training for cognition in adults with hearing loss: a systematic review and meta-analysis

    Get PDF
    This systematic review and meta-analysis examined the efficacy of auditory training and cognitive training to improve cognitive function in adults with hearing loss. A literature search of academic databases (e.g., MEDLINE, Scopus) and gray literature (e.g., OpenGrey) identified relevant articles published up to January 25, 2018. Randomized controlled trials (RCTs) or repeated measures designs were included. Outcome effects were computed as Hedge’s g and pooled using random-effects meta-analysis (PROSPERO: CRD42017076680). Nine studies, five auditory training, and four cognitive training met the inclusion criteria. Following auditory training, the pooled effect was small and statistically significant for both working memory (g = 0.21; 95% CI [0.05, 0.36]) and overall cognition (g = 0.19; 95% CI [0.07, 0.31]). Following cognitive training, the pooled effect for working memory was small and statistically significant (g = 0.34; 95% CI [0.16, 0.53]), and the pooled effect for overall cognition was large and significant (g = 1.03; 95% CI [0.41, 1.66]). However, this was dependent on the classification of training approach. Sensitivity analyses revealed no statistical difference between the effectiveness of auditory and cognitive training for improving cognition upon removal of a study that used a combined auditory–cognitive approach, which showed a very large effect. Overall certainty in the estimation of effect was “low” for auditory training and “very low” for cognitive training. High-quality RCTs are needed to determine which training stimuli will provide optimal conditions to improve cognition in adults with hearing loss

    Unambiguous Identification of the Second 2+ State in 12C and the Structure of the Hoyle State

    Full text link
    The second 2+ state of 12C, predicted over fifty years ago as an excitation of the Hoyle state, has been unambiguously identified using the 12C(g,a_0)8Be reaction. The alpha particles produced by the photodisintegration of 12C were detected using an Optical Time Projection Chamber (O-TPC). Data were collected at beam energies between 9.1 and 10.7 MeV using the intense nearly mono-energetic gamma-ray beams at the HIgS facility. The measured angular distributions determine the cross section and the E1-E2 relative phases as a function of energy leading to an unambiguous identification of the second 2+ state in 12C at 10.03(11) MeV, with a total width of 800(130) keV and a ground state gamma-decay width of 60(10) meV; B(E2: 2+ ---> gs) = 0.73(13) e2fm4 [or 0.45(8) W.u.]. The Hoyle state and its rotational 2+ state that are more extended than the ground state of 12C presents a challenge and constraints for models attempting to reveal the nature of three alpha particle states in 12C. Specifically it challenges the ab-initio Lattice Effective Field Theory (L-EFT) calculations that predict similar r.m.s. radii for the ground state and the Hoyle state.Comment: Accepted for Publication in the Physical Review Lette

    Dynamical cloud formation traced by atomic and molecular gas

    Get PDF
    Context. Atomic and molecular cloud formation is a dynamical process. However, kinematic signatures of these processes are still observationally poorly constrained. Aims. We identify and characterize the cloud formation signatures in atomic and molecular gas. Methods. Targeting the cloud-scale environment of the prototypical infrared dark cloud G28.3, we employed spectral line imaging observations of the two atomic lines HI and [CI] as well as molecular lines observations in 13CO in the 1–0 and 3–2 transitions. The analysis comprises investigations of the kinematic properties of the different tracers, estimates of the mass flow rates, velocity structure functions, a histogram of oriented gradients (HOG) study, and comparisons to simulations. Results. The central infrared dark cloud (IRDC) is embedded in a more diffuse envelope of cold neutral medium traced by HI self-absorption and molecular gas. The spectral line data as well as the HOG and structure function analysis indicate a possible kinematic decoupling of the HI from the other gas compounds. Spectral analysis and position–velocity diagrams reveal two velocity components that converge at the position of the IRDC. Estimated mass flow rates appear rather constant from the cloud edge toward the center. The velocity structure function analysis is consistent with gas flows being dominated by the formation of hierarchical structures. Conclusions. The observations and analysis are consistent with a picture where the IRDC G28.3 is formed at the center of two converging gas flows. While the approximately constant mass flow rates are consistent with a self-similar, gravitationally driven collapse of the cloud, external compression (e.g., via spiral arm shocks or supernova explosions) cannot be excluded yet. Future investigations should aim at differentiating the origin of such converging gas flows

    Factors associated with crisis pregnancies in Ireland: Findings from three nationally representative sexual health surveys

    Get PDF
    Background: Findings on the demographic and sexual health characteristics associated with the experience of a crisis pregnancy is important to inform the public health policy of a country, including Ireland. Findings from other jurisdictions have suggested that certain demographic groups are at risk for unintended pregnancies and the disparity between the groups have been growing in recent years. Ireland is a country which experienced much economic and societal change in the first decade of the 21st century, changes which are likely to have affected demographic variables pertaining to sexual health. The current study had two aims: to investigate changes in the socioeconomic characteristics associated with crisis pregnancies over a seven year period [2003 to 2010], and to investigate the recent [2010] socioeconomic risk factors associated with crisis pregnancies in Ireland. Methods: The study compared the results from 18-45 year old women using data from three broadly similar nationally representative Irish sexual health surveys carried out in 2003, 2004-2006 and 2010. Chi square analysis compared of the socioeconomic characteristics across the seven year period and found that a higher proportion of women with two or more children and women for whom religion was not important reported a crisis pregnancy in 2010 compared with earlier years. A logistic regression then investigated the sexual health history and socioeconomic factors associated with the experience of a recent crisis pregnancy using the most recent 2010 data. Results: Receipt of sex education and contraception use at first sex significantly predicted the experiencing of a recent crisis pregnancy. Younger women and those with a lower level of education were more likely to report having experienced a recent crisis pregnancy. Conclusion: Similar demographic groups are at risk for experiencing a crisis pregnancy in Ireland compared with international research, yet the disparities between demographic groups who have experienced a crisis pregnancy appear to be decreasing rather than increasing over a seven year period. Recommendations are made with regard to the provision of continued sex education throughout the lifespan, particularly for those women who are at an increased risk of experiencing a crisis pregnancy
    corecore